Sign In
Start by partitioning the message into groups of three.
Use the results from Part A.
& 12&15&15 11&0&15 21&20&0 2&5&12 15&23&0
&- 21 6 0 - 68 8 45 102 - 42 - 60 - 53 20 21 99 - 30 - 69
We want to write the uncoded 1* 3 row matrices for the message. LOOK OUT BELOW We can start by recalling that matrix multiplication can be used to encode and decode messages. Let's recall which numbers are assigned to which letter in the alphabet. Remember that blank space corresponds to 0.
Code | ||
---|---|---|
0= | 9=I | 18=R |
1=A | 10=J | 19=S |
2=B | 11=K | 20=T |
3=C | 12=L | 21=U |
4=D | 13=M | 22=V |
5=E | 14=N | 23=W |
6=F | 15=O | 24=X |
7=G | 16=P | 25=Y |
8=H | 16=Q | 26=Z |
K& &O U&T&\\ B&E&L O&W&}
Finally, we can use our table to rewrite each group as a 1* 3 matrix.
Group of Three Letters | Uncoded Row Matrix |
---|---|
L&O&O | 12&15&15 |
K& &O | 11&0&15 |
U&T& | 21&20&0 |
B&E&L | 2&15&12 |
O&W& | 15&23&0 |
\\ 2&5&12 15&23&0}Now, we can multiply each of the uncoded row matrices by the encoding matrix to get a corresponding coded matrices. Let's start with the first uncoded row matrix.
Multiply matrices
Multiply
a+(- b)=a-b
Add and subtract terms
Multiply matrices
Multiply
a+(- b)=a-b
Add and subtract terms
Multiply matrices
Multiply
a+(- b)=a-b
Add and subtract terms
Multiply matrices
Multiply
a+(- b)=a-b
Add and subtract terms
Multiply matrices
Multiply
a+(- b)=a-b
Add and subtract terms