Sign In
Let's first graph the given square root function and find its domain and range. Then, we will compare the graph to the graph of its parent function.
x | -sqrt(x) | y=-sqrt(x) |
---|---|---|
0 | -sqrt(0) | 0 |
1 | -sqrt(1) | -1 |
4 | -sqrt(4) | -2 |
9 | -sqrt(9) | -3 |
Let's plot and connect the obtained points. Remember, the domain is all real numbers greater than or equal to 0, so we do not want to extend the function any farther to the left.
We can see that the function takes values of y that are less than or equal to 0. This tells us the range. Domain:& {x|x≥ 0} Range:& {y|y≤ 0}
To compare the graph of our function with the graph of the parent function f(x)=sqrt(x), we will consider some possible transformations.
Transformations of f(x) | |
---|---|
Reflections | In the x-axis y=- f(x) |
In the y-axis y=f(- x) |
Let's now identify the transformations in our function. y=-sqrt(x) The graph of the given function is a reflection in the x-axis of the graph of f(x)=sqrt(x).