Practice Test
Sign In
Calculate the lengths of the sides of the triangles using the Distance Formula.
Yes, see solution.
To see whether △ TJD and △ SEK are congruent or not, let's find the lengths of the sides.
Substitute ( - 4,- 2) & ( 0,5)
Corresponding Sides | Distance Formula | Result |
---|---|---|
TJ and SE | sqrt((0-(- 4))^2+(5-(- 2))^2) ? = sqrt((3-(- 1))^2+(10-3)^2) | sqrt(65)= sqrt(65) |
JD and EK | sqrt((1-0)^2+(- 1-5)^2) ? = sqrt((4-3)^2+(4-10)^2) | sqrt(37)= sqrt(37) |
DT and KS | sqrt((- 4-1)^2+(- 1-(- 2))^2) ? = sqrt((- 1-4)^2+(3-4)^2) | sqrt(26)= sqrt(26) |
Since all three side pairs are congruent, the Side-Side-Side (SSS) Congruence Postulate guarantees that the triangles are congruent. △ MNO≅△ QRS