Mid-Chapter Quiz
Sign In
Calculate the lengths of the sides of the triangles using the Distance Formula.
Yes, see solution.
To see whether △ PQR and △ XYZ are congruent or not, let's find the lengths of the sides.
Substitute ( 8,1) & ( - 7,- 15)
Subtract terms
(- a)^2=a^2
Calculate power
Add terms
Corresponding Sides | Distance Formula | Result |
---|---|---|
PQ and XY | sqrt((- 7-8)^2+(- 15-1)^2) ? = sqrt((- 10-5)^2+(- 5-11)^2) | sqrt(481)= sqrt(481) |
QR and YZ | sqrt((9-(- 7))^2+(- 6-(- 15))^2)? = sqrt((6-(- 10))^2+(4-(- 5))^2) | sqrt(337)= sqrt(337) |
RP and ZX | sqrt((8-9)^2+(1-(- 6))^2)? = sqrt((5-6)^2+(11-4)^2) | sqrt(50)= sqrt(50) |
Since all three side pairs are congruent, the Side-Side-Side (SSS) Congruence Postulate guarantees that the triangles are congruent. △ PQR ≅△ XYZ