5. Recursion and Iteration
Sign In
16, 20, 24, 28, 32
a_1&=16 a_(n+1)&=a_n+4 To do so, we will use a table. To find a_2, we will substitute 1 for n in the above formula. To find a_3, we will substitute 2 for n, and so on.
| n | a_(n+1)=a_n+4 | a_n+4 | a_(n+1) |
|---|---|---|---|
| - | a_1= 16 | - | - |
| 1 | a_(1+1)=a_1+4 ⇕ a_2=a_1+4 |
a_2= a_1+4 ⇓ a_2= 16+4 |
a_2= 20 |
| 2 | a_(2+1)=a_2+4 ⇕ a_3=a_2+4 |
a_3= a_2+4 ⇓ a_3= 20+4 |
a_3= 24 |
| 3 | a_(3+1)=a_3+4 ⇕ a_4=a_3+4 |
a_4= a_3+4 ⇓ a_4= 24+4 |
a_4= 28 |
| 4 | a_(4+1)=a_4+4 ⇕ a_5=a_4+4 |
a_5= a_4+4 ⇓ a_5= 28+4 |
a_5= 32 |
The first five terms of the sequence are 16, 20, 24, 28, and 32.