{{ 'ml-label-loading-course' | message }}
{{ toc.name }}
{{ toc.signature }}
{{ tocHeader }} {{ 'ml-btn-view-details' | message }}
{{ tocSubheader }}
{{ 'ml-toc-proceed-mlc' | message }}
{{ 'ml-toc-proceed-tbs' | message }}
Lesson
Exercises
Recommended
Tests
An error ocurred, try again later!
Chapter {{ article.chapter.number }}
{{ article.number }}. 

{{ article.displayTitle }}

{{ article.intro.summary }}
Show less Show more expand_more
{{ ability.description }} {{ ability.displayTitle }}
Lesson Settings & Tools
{{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }}
{{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }}
{{ 'ml-lesson-time-estimation' | message }}
Concept

Singular Matrix

A singular matrix is a matrix whose determinant is zero.

Since its determinant is zero, a singular matrix has no inverse.

Example

Consider a matrix
Whether a matrix is singular depends on its determinant.
Simplify right-hand side

Calculate the determinant of a matrix

Since its determinant is zero, is a singular matrix.

Extra

Why Do We Calculate the Determinant
A link between the determinant and the the inverse of a non-singular matrix can be illustrated in the formula for the inverse of a matrix.
The determinant is in a denominator. Therefore, the formula is well defined if and only if the determinant is not zero.
Loading content