{{ 'ml-label-loading-course' | message }}
{{ toc.name }}
{{ toc.signature }}
{{ tocHeader }} {{ 'ml-btn-view-details' | message }}
{{ tocSubheader }}
{{ 'ml-toc-proceed-mlc' | message }}
{{ 'ml-toc-proceed-tbs' | message }}
Lesson
Exercises
Recommended
Tests
An error ocurred, try again later!
Chapter {{ article.chapter.number }}
{{ article.number }}. 

{{ article.displayTitle }}

{{ article.intro.summary }}
{{ 'ml-btn-show-less' | message }} {{ 'ml-btn-show-more' | message }} expand_more
{{ 'ml-heading-abilities-covered' | message }}
{{ ability.description }} {{ ability.displayTitle }}
{{ 'ml-heading-lesson-settings' | message }}
{{ 'ml-lesson-number-slides' | message : article.intro.bblockCount}}
{{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount}}
{{ 'ml-lesson-time-estimation' | message }}
Concept

Converse - Conditional Statement

The converse of a conditional statement is a statement that exchanges the hypothesis and the conclusion of the conditional. A converse statement can be written in if-then form.

This can be better understood with an example.

Example Symbols
Conditional
Converse
By considering the truth table for a conditional statement, the conditions under which its converse is true can be determined.
Truth tables of conditional and converse statements
The converse of a conditional statement is false only when the hypothesis is false and the conclusion true. In any other case, the converse of a conditional statement is always true. The explanation for each row of the truth table is similar to the explanation for each row of the truth table for conditional statements.