{{ tocSubheader }}
| {{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }} |
| {{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }} |
| {{ 'ml-lesson-time-estimation' | message }} |
a1>0 | a1<0 | |
---|---|---|
r>1 | Increasing 3 →×2 6 →×2 12 →×2 24 →×2 48… |
Decreasing -3 →×2 -6 →×2 -12 →×2 -24 →×2 -48… |
r=1 | Constant
3 →×1 3 →×1 3 →×1 3 →×1 3… |
Constant
-3 →×1 -3 →×1 -3 →×1 -3 →×1 -3… |
0<r<1 | Decreasing 48 →×21 24 →×21 12 →×21 6 →×21 3… |
Increasing -48 →×21 -24 →×21 -12 →×21 -6 →×21 -3… |
r<0 | Alternating
3 →×(-2) -6 →×(-2) 12 →×(-2) -24 →×(-2) 48… |
Alternating
-3 →×(-2) 6 →×(-2) -12 →×(-2) 24 →×(-2) -48… |
Like for any other sequence, the first term of a geometric sequence is denoted by a1, the second by a2, and so on. Since geometric sequences have a common ratio r, once one term is known, the next term can always be found by multiplying the known term by r.
In fact, the sequence can be found using only a1 and r, since all the subsequent terms can be found by multiplying a1 by r a specific number of times. Because of this, geometric sequences have the following general form.
a1, a1r, a1r2, a1r3, a1r4, …