{{ 'ml-label-loading-course' | message }}
{{ toc.name }}
{{ toc.signature }}
{{ tocHeader }} {{ 'ml-btn-view-details' | message }}
{{ tocSubheader }}
{{ 'ml-toc-proceed-mlc' | message }}
{{ 'ml-toc-proceed-tbs' | message }}
Lesson
Exercises
Recommended
Tests
An error ocurred, try again later!
Chapter {{ article.chapter.number }}
{{ article.number }}. 

{{ article.displayTitle }}

{{ article.intro.summary }}
Show less Show more expand_more
{{ ability.description }} {{ ability.displayTitle }}
Lesson Settings & Tools
{{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }}
{{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }}
{{ 'ml-lesson-time-estimation' | message }}
Concept

Absolute Value of a Complex Number

The absolute value of a complex number , also called the modulus, is the distance from the origin to the point in the complex plane.
Point (a,b) that represents a complex number z = a + bi is plotted in the complex plane. A vector is drawn from the origin to point (a,b) such that its magnitude is the modulus of z.

The number can be interpreted as a vector and therefore, its length can be calculated using the Distance Formula.

For example, the absolute value of is

Loading content