{{ toc.name }}
{{ toc.signature }}
{{ toc.name }} {{ 'ml-btn-view-details' | message }}
{{ stepNode.name }}
Proceed to next lesson
Lesson
Exercises
Recommended
Tests
An error ocurred, try again later!
Chapter {{ article.chapter.number }}
{{ article.number }}. 

{{ article.displayTitle }}

{{ article.introSlideInfo.summary }}
{{ 'ml-btn-show-less' | message }} {{ 'ml-btn-show-more' | message }} expand_more
{{ 'ml-heading-abilities-covered' | message }}
{{ ability.description }}

{{ 'ml-heading-lesson-settings' | message }}

{{ 'ml-lesson-show-solutions' | message }}
{{ 'ml-lesson-show-hints' | message }}
{{ 'ml-lesson-number-slides' | message : article.introSlideInfo.bblockCount}}
{{ 'ml-lesson-number-exercises' | message : article.introSlideInfo.exerciseCount}}
{{ 'ml-lesson-time-estimation' | message }}

Concept

Absolute Minimum and Maximum

The absolute minimum, or global minimum, of a function is the least output in its whole domain.
Absolute minimum of a quartic function 0.3*(x+3)*(x+2)*(x+1)*(x-1) located at (0.326345,-2.07423)

The absolute maximum, or global maximum, of a function is defined in a similar way. It is the greatest output of the function in its whole domain.

Absolute minimum of a quartic function -0.3*(x+2.5)*(x+1)*(x)*(x-2) located at (1.3,2.38602)
The absolute maximum of a function is also a relative maximum, and the absolute minimum is also a relative minimum. If a function increases indefinitely, it does not have an absolute maximum. Likewise, if a function decreases indefinitely, it does not have an absolute minimum. The function might still have relative extrema.
Different functions with different extrema