McGraw Hill Glencoe Algebra 1, 2012
MH
McGraw Hill Glencoe Algebra 1, 2012 View details
4. Elimination Using Multiplication
Continue to next subchapter

Exercise 4 Page 359

To solve a system of equations using the Elimination Method, one of the variable terms needs to be eliminated when one equation is added to or subtracted from the other equation. In this exercise, this means that either the terms or the terms must cancel each other out.
Currently, none of the terms in this system will cancel out. Therefore, we need to find a common multiple between two variable like terms in the system. If we multiply Equation (I) by and multiply Equation (II) by the terms will have opposite coefficients.
We can see that the terms will eliminate each other if we add Equation (I) to Equation (II).
Solve for
Now we can now solve for by substituting the value of into either equation and simplifying.
Solve for
The solution, or intersection point, of the system of equations is