Expand menu menu_open Minimize Start chapters Home History history History expand_more
{{ item.displayTitle }}
navigate_next
No history yet!
Progress & Statistics equalizer Progress expand_more
Student
navigate_next
Teacher
navigate_next
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
No results
{{ searchError }}
search
menu_open
{{ courseTrack.displayTitle }}
{{ statistics.percent }}% Sign in to view progress
{{ printedBook.courseTrack.name }} {{ printedBook.name }}
search Use offline Tools apps
Login account_circle menu_open

Using Properties of Parallel Lines

Using Properties of Parallel Lines 1.12 - Solution

arrow_back Return to Using Properties of Parallel Lines

Both angles are in the interior of the diagram and on opposite sides of the transversal. Therefore, they are alternate interior angles.

According to the Alternate Interior Angles Theorem, if the angles are congruent, then the lines are parallel. 2x=5x33\begin{gathered} 2x=5x-33^\circ \end{gathered} Let's solve this equation.
2x+=5x332 x + = 5 x - 33
-3x=-33\text{-}3 x = \text{-} 33
x=11x =11
When x=11,x=11, the lines L1L_1 and L2L_2 are parallel.