Expand menu menu_open Minimize Start chapters Home History history History expand_more
{{ item.displayTitle }}
No history yet!
Progress & Statistics equalizer Progress expand_more
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
No results
{{ searchError }}
{{ courseTrack.displayTitle }}
{{ statistics.percent }}% Sign in to view progress
{{ printedBook.courseTrack.name }} {{ printedBook.name }}
search Use offline Tools apps
Login account_circle menu_open

The Natural Base e

The Natural Base e 1.20 - Solution

arrow_back Return to The Natural Base e

In order to match the function with its graph, we will first determine the type of the given function, then plot the graph. Lastly, we will compare the outcome with graphs given in the exercise.

Type of Function

To determine whether the given function represents exponential growth or exponential decay, let's recall two properties of the natural base exponential function, y=aerx.y=\textcolor{darkorange}{a}e^{{\color{#FF0000}{r}}x}.

a>0a>0 and r>0r>0 a>0a>0 and r<0r<0
Exponential growth function Exponential decay function

Let's now consider the given function. y=e-2xy=1e-2x\begin{gathered} y=e^{\text{-} 2x} \quad \Leftrightarrow \quad y=\textcolor{darkorange}{1}e^{{\color{#FF0000}{\text{-} 2}}x} \end{gathered} Since a=1\textcolor{darkorange}{a}=\textcolor{darkorange}{1} is greater than zero and r=-2{\color{#FF0000}{r}}={\color{#FF0000}{\text{-} 2}} is less than zero, the function is an exponential decay function.


Next, let's make a table of values to graph the function.

xx e-2xe^{\text{-} 2x} y=e-2xy=e^{\text{-} 2x}
-1{\color{#0000FF}{\text{-} 1}} e-2(-1)e^{\text{-} 2({\color{#0000FF}{\text{-} 1}})} 7.39\approx {\color{#009600}{7.39}}
0{\color{#0000FF}{0}} e-2(0)e^{\text{-} 2({\color{#0000FF}{0}})} 1{\color{#009600}{1}}
1{\color{#0000FF}{1}} e-2(1)e^{\text{-} 2({\color{#0000FF}{1}})} 0.14\approx {\color{#009600}{0.14}}

Finally, we will plot the points and connect them with a smooth curve.


Since y=e-2xy=e^{\text{-} 2x} is an exponential decay function and the points (-1,7.39)(\text{-} 1,7.39) and (0,1)(0,1) belong to its graph, we can conclude that it is represented by the graph in choice A.