{{ item.displayTitle }}

No history yet!

Student

Teacher

{{ item.displayTitle }}

{{ item.subject.displayTitle }}

{{ searchError }}

{{ courseTrack.displayTitle }} {{ statistics.percent }}% Sign in to view progress

{{ printedBook.courseTrack.name }} {{ printedBook.name }} a

The slopes of the lines are $m_{1}=1-3 =-3andm_{2}=12 =2,$
and the $y$-intercepts are $b_{1}=1$ and $b_{2}=6.$ We can now write the system of equations by substituting the values into the slope-intercept form.
${y=-3x+1y=2x+6 $

b

The solution to this system of linear equations is the $x$-value and $y$-value value where the graphs intersect.

The solution is $(-1,4).$

c

${y=2x+6y=-3x+1 (I)(II) $

${4=?2(-1)+64=?-3(-1)+1 $

MultPosNeg$a(-b)=-a⋅b$

${4=?-2+64=?-3(-1)+1 $

MultNegNegOnePar$-a(-b)=a⋅b$

${4=?-2+64=?3+1 $

AddTermsAdd terms

${4=44=4 $