We want to solve the given using the .
{ y = x 2 − 3 x − 3 (I) y = - 2 x 2 − x + 5 (II) \begin{cases}y=x^2-3x-3 & \, \text {(I)}\\ y=\text{-}2x^2-x+5 & \text {(II)}\end{cases} { y = x 2 − 3 x − 3 y = - 2 x 2 − x + 5 ( I ) ( II )
The
y - y\text{-} y - variable is isolated in Equation (II). This allows us to substitute its value,
- 2 x 2 − x + 5 , \text{-}2x^2-x+5, - 2 x 2 − x + 5 , for
y y y in Equation (I).
{ y = x 2 − 3 x − 3 (I) y = - 2 x 2 − x + 5 (II) \begin{cases}y=x^2-3x-3 & \, \text {(I)}\\ y=\text{-}2x^2-x+5 & \text {(II)}\end{cases} { y = x 2 − 3 x − 3 y = - 2 x 2 − x + 5 ( I ) ( II ) { - 2 x 2 − x + 5 = x 2 − 3 x − 3 y = - 2 x 2 − x + 5 \begin{cases}{\color{#0000FF}{\text{-}2x^2-x+5}}=x^2-3x-3 \\ y=\text{-}2x^2-x+5 \end{cases} { - 2 x 2 − x + 5 = x 2 − 3 x − 3 y = - 2 x 2 − x + 5
(I): {\color{#8C8C8C}{\text{(I): }}} ( I ): Simplify
{ 0 = x 2 − 3 x − 3 − ( - 2 x 2 − x + 5 ) y = - 2 x 2 − x + 5 \begin{cases}0=x^2-3x-3-(\text{-}2x^2-x+5) \\ y=\text{-}2x^2-x+5 \end{cases} { 0 = x 2 − 3 x − 3 − ( - 2 x 2 − x + 5 ) y = - 2 x 2 − x + 5 { 0 = x 2 − 3 x − 3 + 2 x 2 + x − 5 y = - 2 x 2 − x + 5 \begin{cases}0=x^2-3x-3+2x^2+x-5 \\ y=\text{-}2x^2-x+5 \end{cases} { 0 = x 2 − 3 x − 3 + 2 x 2 + x − 5 y = - 2 x 2 − x + 5 { 0 = 3 x 2 − 2 x − 8 y = - 2 x 2 − x + 5 \begin{cases}0=3x^2-2x-8 \\ y=\text{-}2x^2-x+5 \end{cases} { 0 = 3 x 2 − 2 x − 8 y = - 2 x 2 − x + 5
{ 3 x 2 − 2 x − 8 = 0 y = - 2 x 2 − x + 5 \begin{cases}3x^2-2x-8=0 \\ y=\text{-}2x^2-x+5 \end{cases} { 3 x 2 − 2 x − 8 = 0 y = - 2 x 2 − x + 5
Notice that in Equation (I), we have a in terms of only the
x - x\text{-} x - variable.
3 x 2 − 2 x − 8 = 0 ⇔ 3 x 2 + ( - 2 ) x + ( - 8 ) = 0 \begin{gathered}
3x^2-2x-8=0 \quad \Leftrightarrow \quad {\color{#0000FF}{3}}x^2+({\color{#FF0000}{\text{-} 2}})x+({\color{#009600}{\text{-} 8}})=0
\end{gathered} 3 x 2 − 2 x − 8 = 0 ⇔ 3 x 2 + ( - 2 ) x + ( - 8 ) = 0
Now, recall the .
x = - b ± b 2 − 4 a c 2 a \begin{gathered}
x=\dfrac{\text{-} b\pm\sqrt{b^2-4ac}}{2a}
\end{gathered} x = 2 a - b ± b 2 − 4 a c
We can substitute
a = 3 , {\color{#0000FF}{a}}={\color{#0000FF}{3}}, a = 3 , b = - 2 , {\color{#FF0000}{b}}={\color{#FF0000}{\text{-} 2}}, b = - 2 , and
c = - 8 {\color{#009600}{c}}={\color{#009600}{\text{-} 8}} c = - 8 into this formula to solve the quadratic equation.
x = - b ± b 2 − 4 a c 2 a x=\dfrac{\text{-} b\pm\sqrt{b^2-4ac}}{2a} x = 2 a - b ± b 2 − 4 a c x = - ( - 2 ) ± ( - 2 ) 2 − 4 ( 3 ) ( - 8 ) 2 ( 3 ) x=\dfrac{\text{-} ({\color{#FF0000}{\text{-} 2}})\pm\sqrt{({\color{#FF0000}{\text{-} 2}})^2-4({\color{#0000FF}{3}})({\color{#009600}{\text{-} 8}})}}{2({\color{#0000FF}{3}})} x = 2 ( 3 ) - ( - 2 ) ± ( - 2 ) 2 − 4 ( 3 ) ( - 8 ) x = 2 ± ( - 2 ) 2 − 4 ( 3 ) ( - 8 ) 2 ( 3 ) x=\dfrac{2\pm\sqrt{(\text{-}2)^2-4(3)(\text{-}8)}}{2(3)} x = 2 ( 3 ) 2 ± ( - 2 ) 2 − 4 ( 3 ) ( - 8 ) x = 2 ± 4 − 4 ( 3 ) ( - 8 ) 2 ( 3 ) x=\dfrac{2\pm\sqrt{4-4(3)(\text{-}8)}}{2(3)} x = 2 ( 3 ) 2 ± 4 − 4 ( 3 ) ( - 8 ) x = 2 ± 4 + 96 ) 6 x=\dfrac{2\pm\sqrt{4+96)}}{6} x = 6 2 ± 4 + 9 6 ) x = 2 ± 100 6 x=\dfrac{2\pm\sqrt{100}}{6} x = 6 2 ± 1 0 0
x = 2 ± 10 6 x=\dfrac{2 \pm 10}{6} x = 6 2 ± 1 0
This result tells us that we have two solutions for x . x. x . One of them will use the positive sign and the other one will use the negative sign.
x = 2 ± 10 6 x=\dfrac{2 \pm 10}{6} x = 6 2 ± 1 0
x 1 = 2 + 10 6 x_1=\dfrac{2+10}{6} x 1 = 6 2 + 1 0
x 2 = 2 − 10 6 x_2=\dfrac{2-10}{6} x 2 = 6 2 − 1 0
x 1 = 12 6 x_1=\dfrac{12}{6} x 1 = 6 1 2
x 2 = - 8 6 x_2=\dfrac{\text{-} 8}{6} x 2 = 6 - 8
x 1 = 2 x_1=2 x 1 = 2
x 2 = - 4 3 x_2=\text{-} \dfrac{4}{3} x 2 = - 3 4
Now, consider Equation (II).
y = - 2 x 2 − x + 5 \begin{gathered}
y=\text{-}2 x^2 - x + 5
\end{gathered} y = - 2 x 2 − x + 5
We can substitute
x = 2 x=2 x = 2 and
x = - 4 3 x=\text{-} \frac{4}{3} x = - 3 4 into the above equation to find the values for
y . y. y . Let's start with
x = 2. x=2. x = 2 .
y = - 2 x 2 − x + 5 y=\text{-}2 x^2-x+5 y = - 2 x 2 − x + 5 y = - 2 ( 2 ) 2 − 2 + 5 y=\text{-}2 ({\color{#0000FF}{2}})^2-{\color{#0000FF}{2}}+5 y = - 2 ( 2 ) 2 − 2 + 5 y = - 2 ( 4 ) − 2 + 5 y=\text{-}2(4)-2+5 y = - 2 ( 4 ) − 2 + 5 y = - 8 − 2 + 5 y=\text{-}8-2+5 y = - 8 − 2 + 5
We found that
y = - 5 , y=\text{-} 5, y = - 5 , when
x = 2. x=2. x = 2 . One solution of the system, which is a point of intersection of the two , is
( 2 , - 5 ) . (2,\text{-} 5). ( 2 , - 5 ) . To find the other solution, we will substitute
- 4 3 \text{-} \frac{4}{3} - 3 4 for
x x x in Equation (II) again.
y = - 2 x 2 − x + 5 y=\text{-}2x^2-x+5 y = - 2 x 2 − x + 5 y = - 2 ( - 4 3 ) 2 − ( - 4 3 ) + 5 y=\text{-}2\left( {\color{#0000FF}{\text{-} \dfrac{4}{3}}} \right)^2-\left({\color{#0000FF}{\text{-}\dfrac{4}{3}}}\right)+5 y = - 2 ( - 3 4 ) 2 − ( - 3 4 ) + 5 y = - 2 ( 16 9 ) − ( - 4 3 ) + 5 y=\text{-}2\left(\dfrac{16}{9}\right)-\left(\text{-}\dfrac{4}{3}\right)+5 y = - 2 ( 9 1 6 ) − ( - 3 4 ) + 5 y = - 32 9 − ( - 4 3 ) + 5 y=\text{-}\dfrac{32}{9}-\left(\text{-}\dfrac{4}{3}\right)+5 y = - 9 3 2 − ( - 3 4 ) + 5 y = - 32 9 + 4 3 + 5 y=\text{-}\dfrac{32}{9}+\dfrac{4}{3}+5 y = - 9 3 2 + 3 4 + 5 y = - 32 9 + 12 9 + 5 y=\text{-}\dfrac{32}{9}+\dfrac{12}{9}+5 y = - 9 3 2 + 9 1 2 + 5 y = - 32 9 + 12 9 + 45 9 y=\text{-}\dfrac{32}{9}+\dfrac{12}{9}+\dfrac{45}{9} y = - 9 3 2 + 9 1 2 + 9 4 5
y = 25 9 y=\dfrac{25}{9} y = 9 2 5
We found that
y = 25 9 , y=\frac{25}{9}, y = 9 2 5 , when
x = - 4 3 . x=\text{-} \frac{4}{3}. x = - 3 4 . Therefore, our second solution, which is the other point of intersection of the two parabolas, is
( - 4 3 , 25 9 ) . \left( \text{-} \frac{4}{3},\frac{25}{9}\right). ( - 3 4 , 9 2 5 ) .