Expand menu menu_open Minimize Start chapters Home History history History expand_more
{{ item.displayTitle }}
navigate_next
No history yet!
Progress & Statistics equalizer Progress expand_more
Student
navigate_next
Teacher
navigate_next
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
No results
{{ searchError }}
search
menu_open
{{ courseTrack.displayTitle }}
{{ statistics.percent }}% Sign in to view progress
{{ printedBook.courseTrack.name }} {{ printedBook.name }}
search Use offline Tools apps
Login account_circle menu_open

Solving One-Step Equations

Solving One-Step Equations 1.5 - Solution

arrow_back Return to Solving One-Step Equations
a
The first step is to substitute 22 for yy in the equation. Then we use inverse operations to isolate x.x.
yx=12yx=12
2x=12{\color{#0000FF}{2}}x=12
x=122x=\dfrac{12}{2}
x=6x=6
b
After substituting 22 for yy we can subtract 22 from both sides to isolate x.x.
x+y=15x+y=15
x+2=15x+{\color{#0000FF}{2}}=15
x=13x=13
c
Substitute 22 for yy and solve the equation for xx by using the inverse operation of subtracting 2,2, meaning, adding 2.2.
-5=xy\text{-}5=x-y
-5=x2\text{-}5=x-{\color{#0000FF}{2}}
x2=-5x-2=\text{-}5
x=-3x=\text{-}3
d
Let's first substitute 22 for yy in the equation. 12x=10 \dfrac{1}{{\color{#0000FF}{2}}}x=10 Now we can multiply both sides by 22 to rewrite find an equivalent equation without fractions.
12x=10\dfrac{1}{2}x=10
212x=2102\cdot\dfrac{1}{2}x=2\cdot10
x=20x=20