Expand menu menu_open Minimize Start chapters Home History history History expand_more
{{ item.displayTitle }}
navigate_next
No history yet!
Progress & Statistics equalizer Progress expand_more
Student
navigate_next
Teacher
navigate_next
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
No results
{{ searchError }}
search
menu_open
{{ courseTrack.displayTitle }}
{{ statistics.percent }}% Sign in to view progress
{{ printedBook.courseTrack.name }} {{ printedBook.name }}
search Use offline Tools apps
Login account_circle menu_open

Rational Exponents and Radicals

Rational Exponents and Radicals 1.2 - Solution

arrow_back Return to Rational Exponents and Radicals
When rewriting a radical into exponential form, the exponent of the radicand is the numerator of the rational exponent, and the index of the radical is the denominator of the rational exponent. an=a1n and amn=amn\begin{gathered} \sqrt[{\color{#009600}{n}}]{a}=a^\frac{1}{{\color{#009600}{n}}} \quad \text{ and } \quad \sqrt[{\color{#009600}{n}}]{a^{\color{#FF0000}{m}}}=a^\frac{{\color{#FF0000}{m}}}{{\color{#009600}{n}}} \end{gathered} With this in mind, we can rewrite the given expression. (7p6q9)14(7p6q9)14\begin{gathered} &\sqrt[{\color{#009600}{4}}]{\left(7p^6q^9\right)^{\color{#FF0000}{1}}} \quad \Leftrightarrow \quad \left(7p^6q^9\right)^\frac{{\color{#FF0000}{1}}}{{\color{#009600}{4}}} \end{gathered} Now, let's simplify this expression as much as possible.
(7p6q9)14\left(7p^6q^9\right)^\frac{1}{4}
714(p6)14(q9)147^\frac{1}{4}\left(p^6\right)^{ \frac{1}{4}} \left(q^9\right)^{\frac{1}{4}}
714p614q9147^\frac{1}{4}p^{6\cdot \frac{1}{4}} q^{9\cdot \frac{1}{4}}
714p64q947^\frac{1}{4}p^\frac{6}{4} q^ \frac{9}{4}
714p32q947^\frac{1}{4}p^\frac{3}{2}q^\frac{9}{4}