You must have JavaScript enabled to use this site.
Expand menu
menu_open
Minimize
Start chapters
Home
History
history
History
expand_more
{{ item.displayTitle }}
navigate_next
No history yet!
Progress & Statistics
equalizer
Progress
expand_more
Student
navigate_next
Teacher
navigate_next
filter_list
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
No results
{{ searchError }}
Choose book
search
cancel
menu_open
{{ courseTrack.displayTitle }}
{{ statistics.percent }}%
Sign in to view progress
{{ printedBook.courseTrack.name }}
{{ printedBook.name }}
Get free trial
search
Use offline
Tools
apps
Login
account_circle
menu_open
Performing Arithmetic with Complex Numbers
Choose Course
Algebra 2
Quadratic Functions and Equations
Performing Arithmetic with Complex Numbers
expand_more
close
Performing Arithmetic with Complex Numbers 1.21 - Solution
arrow_back
Return to Performing Arithmetic with Complex Numbers
a
When adding and subtracting complex numbers, we add and subtract the
real parts
and
imaginary parts
separately.
(
2
+
3
i
)
+
(
4
+
2
i
)
RemovePar
Remove parentheses
2
+
3
i
+
4
+
2
i
AddTerms
Add terms
6
+
5
i
The numbers add up to
6
+
5
i
.
b
Proceed in the same way as in the previous sub-exercise.
(
6
−
2
i
)
+
(
9
i
−
2
)
RemovePar
Remove parentheses
6
−
2
i
+
9
i
−
2
AddSubTerms
Add and subtract terms
4
+
7
i
The result of the addition is, therefore,
4
+
7
i
.
c
This time, we are going to subtract two complex numbers. This is done in a similar fashion as before. The only difference is that we have to flip the signs when removing the parentheses around the second term.
(
3
+
1
0
i
)
−
(
3
−
1
2
i
)
RemovePar
Remove parentheses
3
+
1
0
i
−
(
3
−
1
2
i
)
RemoveParSigns
Remove parentheses and change signs
3
+
1
0
i
−
3
+
1
2
i
AddSubTerms
Add and subtract terms
2
2
i
The subtraction results in
2
2
i
.
d
Let's now do the same thing once more.
-
(
2
0
i
−
3
)
−
(
4
−
8
i
)
RemoveParSigns
Remove parentheses and change signs
-
2
0
i
+
3
−
4
+
8
i
AddSubTerms
Add and subtract terms
-
1
−
1
2
i
The result is
-
1
−
1
2
i
.