McGraw Hill Integrated II, 2012
MH
McGraw Hill Integrated II, 2012 View details
2. Surface Areas of Prisms and Cylinders
Continue to next subchapter

Exercise 37 Page 820

Use the formula for the surface area of a prism and for the surface area of a cylinder.

About 1059.3 cubic centimeters

Practice makes perfect

Let's analyze the given composite solid.

The composite solid consists of two parts.

  • A half of a cylinder with a diameter of 12 centimeters and a height of 12 centimeters. The radius of the cylinder is r= 122=6 centimeters.
  • A cube with a side length of s=12 centimeters.The surface area of the composite solid is equal to the surface area of 5 out of 6 faces of the cube, and the half of the surface area of the cylinder. \begin{gathered} S_\text{solid}=\textcolor{darkorange}{S_\text{cube part}}+\textcolor{darkviolet}{S_\text{half-cylinder}} \end{gathered} Since each side of the cube is a square with a side length of s=12 centimeters, let's use the formula for the area of a square to find one part of the surface area of the composite solid, \textcolor{darkorange}{S_\text{cube part}}.
    \textcolor{darkorange}{S_\text{cube part}}=5\cdot A_\text{square}
    \textcolor{darkorange}{S_\text{cube part}}=5\cdot s^2
    \textcolor{darkorange}{S_\text{cube part}}=5\cdot ({\color{#009600}{12}})^2
    \textcolor{darkorange}{S_\text{cube part}}=\textcolor{darkorange}{720}
    Now, let's use the formula for the surface area of a cylinder.
    \textcolor{darkviolet}{S_\text{half-cylinder}}=\dfrac{1}{2}\cdot S_\text{cylinder}
    \textcolor{darkviolet}{S_\text{half-cylinder}}=\dfrac{1}{2}\cdot\left(2\pi rh+2\pi r^2\right)
    Simplify right-hand side
    \textcolor{darkviolet}{S_\text{half-cylinder}}=\dfrac{1}{2}\cdot 2\left(\pi rh+\pi r^2\right)
    \textcolor{darkviolet}{S_\text{half-cylinder}}=\dfrac{2}{2}\cdot \left(\pi rh+\pi r^2\right)
    \textcolor{darkviolet}{S_\text{half-cylinder}}=1\cdot \left(\pi rh+\pi r^2\right)
    \textcolor{darkviolet}{S_\text{half-cylinder}}=\pi rh+\pi r^2
    Substitute values and evaluate
    \textcolor{darkviolet}{S_\text{half-cylinder}}=\pi({\color{#0000FF}{6}})({\color{#009600}{12}})+\pi({\color{#0000FF}{6}})^2
    \textcolor{darkviolet}{S_\text{half-cylinder}}=72\pi+36\pi
    \textcolor{darkviolet}{S_\text{half-cylinder}}=108\pi
    \textcolor{darkviolet}{S_\text{half-cylinder}}=339.292006\ldots
    \textcolor{darkviolet}{S_\text{half-cylinder}}\approx \textcolor{darkviolet}{339.3}
    Finally, let's add \textcolor{darkorange}{S_\text{cube part}} and \textcolor{darkviolet}{S_\text{half-cylinder}} to find the surface area of the composite solid, S_\text{solid}.
    S_\text{solid}=\textcolor{darkorange}{S_\text{cube part}}+\textcolor{darkviolet}{S_\text{half-cylinder}}
    S_\text{solid}=\textcolor{darkorange}{720}+\textcolor{darkviolet}{339.3}
    S_\text{solid}=1059.3
    This tells us that the surface area of the given solid is about 1059.3 cubic centimeters.