1. Adding and Subtracting Polynomials
Sign In
cc P&=&2l+2w &⇕ P/2&= &2l+2w/2 &⇕ 400/2&=&l +w In our case, the perimeter is 400 meaning half of that would be 200. We can choose numbers for our length and width that add to 200. Let's draw some rectangles.
Keep in mind those are just four possible solutions.
| Rectangle | Length | Width | Area |
|---|---|---|---|
| 1 | 160 ft | 40 ft | 6400 ft^2 |
| 2 | 150 ft | 50 ft | 7500 ft^2 |
| 3 | 120 ft | 80 ft | 9600 ft^2 |
| 4 | x ft | 200-x ft | x(200-x) ft^2 |
| Length (x) | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 | 190 | x |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Width | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 200-x |
| Area (y) | 1900 | 3600 | 5100 | 6400 | 7500 | 8400 | 9100 | 9600 | 9900 | 10 000 | 9900 | 9600 | 9100 | 8400 | 7500 | 6400 | 5100 | 3600 | 1900 | 200x-x^2 |
Now let's look at the graph of the equation y=200x-x^2.
The peak of the graph is the largest possible area, and that is when y = 10 000.
| Length | 50 | 60 | 70 | 80 | 90 | 100 |
|---|---|---|---|---|---|---|
| Width | 150 | 140 | 130 | 120 | 110 | 100 |
| Area | 7500 | 8400 | 9100 | 9600 | 9900 | 10 000 |
This table indicates that both the length and the width are 100 ft when the area is at its maximum.