You must have JavaScript enabled to use this site.
Expand menu
menu_open
Minimize
Start chapters
Home
History
history
History
expand_more
{{ item.displayTitle }}
navigate_next
No history yet!
Progress & Statistics
equalizer
Progress
expand_more
Student
navigate_next
Teacher
navigate_next
filter_list
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
No results
{{ searchError }}
Choose book
search
cancel
menu_open
{{ courseTrack.displayTitle }}
{{ statistics.percent }}%
Sign in to view progress
{{ printedBook.courseTrack.name }}
{{ printedBook.name }}
Get free trial
search
Use offline
Tools
apps
Login
account_circle
menu_open
Manipulating Radical Functions
Choose Course
Algebra 2
Radical Functions
Manipulating Radical Functions
expand_more
close
Manipulating Radical Functions 1.14 - Solution
arrow_back
Return to Manipulating Radical Functions
To find the inverse of
f
(
x
)
,
we first need to replace
f
(
x
)
with
y
.
f
(
x
)
=
-
x
→
y
=
-
x
Next step is to switch
x
and
y
in the function rule.
y
=
-
x
⇔
switch
x
=
-
y
Now we need to solve for
y
.
The resulting equation will be the inverse of the given function.
x
=
-
y
Solve for
y
MultEqn
LHS
⋅
(
-
1
)
=
RHS
⋅
(
-
1
)
-
x
=
y
RaiseEqn
LHS
2
=
RHS
2
(
-
x
)
2
=
y
NegBaseToPosPow
(
-
a
)
2
=
a
2
x
2
=
y
RearrangeEqn
Rearrange equation
y
=
x
2
Finally, to indicate that this is the inverse of
f
(
x
)
,
we will replace
y
with
f
-
1
(
x
)
.
y
=
x
2
→
f
-
1
(
x
)
=
x
2