You must have JavaScript enabled to use this site.
mathleaks.com
mathleaks.com
Start chapters
home
Start
History
history
History
expand_more
{{ item.displayTitle }}
navigate_next
No history yet!
Progress & Statistics
equalizer
Progress
expand_more
Student
navigate_next
Teacher
navigate_next
Expand menu
menu_open
Minimize
filter_list
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
No results
{{ searchError }}
Choose book
search
cancel
menu_open
home
{{ courseTrack.displayTitle }}
{{ statistics.percent }}%
Sign in to view progress
{{ printedBook.courseTrack.name }}
{{ printedBook.name }}
Get free trial
search
Use offline
Tools
apps
Login
account_circle
menu_open
Manipulating Radical Functions
Choose Course
Algebra 2
Radical Functions
Manipulating Radical Functions
expand_more
close
Manipulating Radical Functions 1.13 - Solution
arrow_back
Return to Manipulating Radical Functions
To find the inverse
of
f
(
x
)
,
we first need to replace
f
(
x
)
with
y
.
From there, we switch
x
and
y
and solve for
y
.
y
=
3
3
x
→
x
=
3
3
y
The resulting equation will be the inverse of the given function.
x
=
3
3
y
Solve for
y
MultEqn
LHS
⋅
3
=
RHS
⋅
3
3
x
=
3
y
RaiseEqn
LHS
3
=
RHS
3
(
3
x
)
3
=
(
3
y
)
3
CalcPow
Calculate power
2
7
x
3
=
(
3
y
)
3
(
n
a
)
n
=
a
2
7
x
3
=
y
RearrangeEqn
Rearrange equation
y
=
2
7
x
3
Finally, to indicate that this is the inverse function of
f
(
x
)
,
we will replace
y
with
f
-
1
(
x
)
.
f
-
1
(
x
)
=
2
7
x
3