| {{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }} |
| {{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }} |
| {{ 'ml-lesson-time-estimation' | message }} |
This can also be written as follows.
To determine the number of columns in the truth table, the compound statement can be broken down
into simpler statements until the simplest statements p, q, and r are obtained.
The columns are formed by ordering each unique step of simplification from the simplest to the most complex. The last column of a truth table is always the original statement.
p | q | r | p→q | q→r | p→r | (p→q)∧(q→r) | [(p→q)∧(q→r)]→(p→r) |
---|---|---|---|---|---|---|---|
? | ? | ? | ? | ? | ? | ? | ? |
In this case, the truth table has eight columns.
p | q | r | p→q | q→r | p→r | (p→q)∧(q→r) | [(p→q)∧(q→r)]→(p→r) |
---|---|---|---|---|---|---|---|
T | T | T | ? | ? | ? | ? | ? |
T | T | F | ? | ? | ? | ? | ? |
T | F | T | ? | ? | ? | ? | ? |
T | F | F | ? | ? | ? | ? | ? |
F | T | T | ? | ? | ? | ? | ? |
F | T | F | ? | ? | ? | ? | ? |
F | F | T | ? | ? | ? | ? | ? |
F | F | F | ? | ? | ? | ? | ? |
The last step in making a truth table is to fill in the remaining empty cells, column by column. The first columns that will be filled in are the conditional statements p→q, q→r, and p→r. A conditional statement is false only when the hypothesis is true and the conclusion false.
p | q | r | p→q | q→r | p→r | (p→q)∧(q→r) | [(p→q)∧(q→r)]→(p→r) |
---|---|---|---|---|---|---|---|
T | T | T | T | T | T | ? | ? |
T | T | F | T | F | F | ? | ? |
T | F | T | F | T | T | ? | ? |
T | F | F | F | F | F | ? | ? |
F | T | T | T | T | T | ? | ? |
F | T | F | T | F | T | ? | ? |
F | F | T | T | T | T | ? | ? |
F | F | F | T | T | T | ? | ? |
The column containing the conjunction (p→q)∧(p→r) is next to fill. A conjunction is false unless both statements are true.
p | q | r | p→q | q→r | p→r | (p→q)∧(q→r) | [(p→q)∧(q→r)]→(p→r) |
---|---|---|---|---|---|---|---|
T | T | T | T | T | T | T | ? |
T | T | F | T | F | F | F | ? |
T | F | T | F | T | T | F | ? |
T | F | F | F | F | F | F | ? |
F | T | T | T | T | T | T | ? |
F | T | F | T | F | T | F | ? |
F | F | T | T | T | T | T | ? |
F | F | F | T | T | T | T | ? |
The last column is another conditional statement, which is only false only when the hypothesis is true and the conclusion false.
p | q | r | p→q | q→r | p→r | (p→q)∧(q→r) | [(p→q)∧(q→r)]→(p→r) |
---|---|---|---|---|---|---|---|
T | T | T | T | T | T | T | T |
T | T | F | T | F | F | F | T |
T | F | T | F | T | T | F | T |
T | F | F | F | F | F | F | T |
F | T | T | T | T | T | T | T |
F | T | F | T | F | T | F | T |
F | F | T | T | T | T | T | T |
F | F | F | T | T | T | T | T |
The Law of Syllogism is usually better understood with an example. Suppose the following two statements are true.
According to the Law of Syllogism, a third true statement can be derived.