Expand menu menu_open Minimize Start chapters Home History history History expand_more
{{ item.displayTitle }}
navigate_next
No history yet!
Progress & Statistics equalizer Progress expand_more
Student
navigate_next
Teacher
navigate_next
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
No results
{{ searchError }}
search
menu_open
{{ courseTrack.displayTitle }}
{{ statistics.percent }}% Sign in to view progress
{{ printedBook.courseTrack.name }} {{ printedBook.name }}
search Use offline Tools apps
Login account_circle menu_open

Interpreting Quadratic Functions in Vertex Form

Interpreting Quadratic Functions in Vertex Form 1.6 - Solution

arrow_back Return to Interpreting Quadratic Functions in Vertex Form

We want to identify the vertex and the axis of symmetry of the graph of given quadratic function. To do so, we will first express it in vertex form where and are either positive or negative numbers. It is important to note that we do not need to graph the parabola to identify the desired information. Let's compare the general formula for the vertex form with our equation. We can see that and

Vertex

The vertex of a quadratic function written in vertex form is the point For this exercise, we have and Therefore, the vertex of the given equation is

Axis of Symmetry

The axis of symmetry of a quadratic function written in vertex form is the vertical line with equation As we have already noticed, for our function, this is Thus, the axis of symmetry is the line