{{ item.displayTitle }}

No history yet!

Student

Teacher

{{ item.displayTitle }}

{{ item.subject.displayTitle }}

{{ searchError }}

{{ courseTrack.displayTitle }} {{ statistics.percent }}% Sign in to view progress

{{ printedBook.courseTrack.name }} {{ printedBook.name }} First, we write an exponential function to model the given situation, thus, recall the general form of an exponential equation. $y=ab_{x} $ In this formula, $a$ is the initial value and $b=1+r,$ where $r$ is the rate of change. If the function represents growth then $r>0,$ and if it represents decay then $r<0.$

To write the equation, we first need to define the variables. Let $y$ be the population, and let $x$ be the number of years after the initial value. In this case, the initial value is a population of $1860000.$ Since the population **decreases** $1.5%$ each year, we have that $r=-0.015.$
$y=1860000[1+(-0.015)]_{x}⇕y=1860000(0.985)_{x} $

$y=1860000(0.985)_{x}$

Substitute$x=12$

$y=1860000(0.985)_{12}$

CalcPowCalculate power

$y=1860000(0.8341319683)$

MultiplyMultiply

$y=1551485.461$

RoundIntRound to nearest integer

$y=1551485$