To write the given equation in exponential form, we will recall the definition of a logarithm. logb(x)=y⇔x=by\begin{gathered} \log_{{\color{#0000FF}{b}}}({\color{#FF0000}{x}})=\textcolor{darkviolet}{y} \quad \Leftrightarrow \quad {\color{#FF0000}{x}}={\color{#0000FF}{b}}^{\textcolor{darkviolet}{y}} \end{gathered}logb(x)=y⇔x=by This means that yyy is the exponent to which bbb must be raised to get x.x.x. In our exercise, yyy is the exponent to which 888 must be raised to get x.x.x. log8(x)=y⇔x=8y\begin{gathered} \log_{{\color{#0000FF}{8}}}({\color{#FF0000}{x}})=\textcolor{darkviolet}{y} \quad \Leftrightarrow \quad {\color{#FF0000}{x}}={\color{#0000FF}{8}}^{\textcolor{darkviolet}{y}} \end{gathered}log8(x)=y⇔x=8y