Envision Math 2.0: Grade 8, Volume 2
EM
Envision Math 2.0: Grade 8, Volume 2 View details
Review

Exercise 1 Page 367

When a point with coordinates (x,y) is rotated 180^(∘) counterclockwise about the origin, the coordinates of its image are (- x,- y).

S'(4,2), T'(2, 2), U'(2,4) V'(4, 4)

Practice makes perfect
A rotation is a transformation about a fixed point called center of rotation. Each point of the original figure and its image are the same distance from the center of rotation. When a counterclockwise rotation is performed about the origin, the coordinates of the image can be written in relation to the coordinates of the preimage.
Rotations About the Origin
90^(∘) Rotation 180^(∘) Rotation 270^(∘) Rotation

ccc Preimage & & Image [0.5em] (x,y) & → & (- y,x)

ccc Preimage & & Image [0.5em] (x,y) & → & (- x,- y)

ccc Preimage & & Image [0.5em] (x,y) & → & (y,- x)

We want to find the coordinates of the image of the quadrilateral after a 180^(∘) counterclockwise rotation about the origin. Therefore, we can use the information in the above table to find the coordinates of the image of each vertex. ccc Preimage & & Image (x,y) & → & (- x, - y) [0.5em] S(- 4,- 2) & & S'(4,2) [0.5em] T(- 2,- 2) & & T'(2, 2) [0.5em] U(- 2,- 4) & & U'(2,4) [0.5em] V(- 4, - 4) & & V'(4, 4)

Extra

Visualizing the Rotation
Let's rotate quadrilateral STUV 180^(∘) counterclockwise about the origin.
rotate