5. Mean Absolute Deviation
Sign In
The mean absolute deviation is the average of the absolute values of the differences between the mean and each value in the data set. Start by calculating the mean of the given set of numbers.
Mean Absolute Deviation: 320
Interpretation: The data, on average, are 320 units away from the mean of 12.
Substitute values
Add fractions
Add terms
.a/b /c.= a/b* c
Multiply
.a /20./.b /20.=a/b
Calculate quotient
| x_i | x-x_i | |x-x_i| |
|---|---|---|
| 2/8 | 4/8- 2/8=2/8 | |2/8|=2/8 |
| 5/8 | 4/8- 5/8=- 1/8 | |- 1/8|=1/8 |
| 3/8 | 4/8- 3/8=1/8 | |1/8|=1/8 |
| 6/8 | 4/8- 6/8=- 2/8 | |- 2/8|=2/8 |
| 4/8 | 4/8- 4/8=0 | |0|=0 |
| Sum of Values | 2/8 + 1/8+1/8 + 2/8 + 0 = 6/8 | |
.a/b /c.= a/b* c
Multiply
.a /2./.b /2.=a/b
Calculate quotient