Big Ideas Math Algebra 1, 2015
BI
Big Ideas Math Algebra 1, 2015 View details
3. Solving Radical Equations
Continue to next subchapter

Exercise 78 Page 566

Rearrange the radical equation so that one of the radical expressions is isolated. Then square both sides of the equation.

No solution.

Practice makes perfect

We will solve the given equation and check the solutions. Let's do these two things one at a time.

Finding the Solutions

To solve the given radical equation, we will first rearrange it so that one of the radical expressions is isolated. Then, we will square both sides of the equation.
sqrt(20-4z)+2sqrt(- z)=10
sqrt(20-4z)=10-2sqrt(- z)
( sqrt(20-4z) )^2= ( 10-2sqrt(- 4z) )^2
20-4z= ( 10-2sqrt(- 4z) )^2
â–Ľ
Simplify right-hand side
20-4z= 10^2 - 40sqrt(- 4z) + ( 2sqrt(- 4z) )^2
20-4z= 10^2 - 40sqrt(- 4z) + 2^2 ( sqrt(- 4z) )^2
20-4z= 10^2 - 40sqrt(- 4z) + 2^2 (- 4z)
20-4z= 100 - 40sqrt(- 4z) + 4(- 4z)
20-4z= 100 - 40sqrt(- 4z) -16z
Since we still have a radical expression on one side of the equation, we will isolate the radical and then follow the same method.
20-4z= 100 - 40sqrt(- 4z) -16z
â–Ľ
Simplify
40sqrt(- 4z) +20-4z= 100 -16z
40sqrt(- 4z)-4z= 80 -16z
40sqrt(- 4z)= 80 -12z
40sqrt(- 4z)/4=80 -12z/4
40sqrt(- 4z)/4=80/4 -12z/4
40/4sqrt(- 4z)=80/4 -12/4z
10sqrt(- 4z)= 20 -3z
( 10 sqrt(- 4z) )^2 = (20-3z)^2
â–Ľ
Simplify
( 10sqrt(- 4z) )^2 = 20^2-120z+(3z)^2
10^2( sqrt(- 4z) )^2 = 20^2-120z+3^2 z^2
10^2( - 4z) = 20^2-120z+3^2 z^2
100(- 4z) = 400-120z+9z^2
- 400z = 400-120z+9z^2
0=400+280z+9z^2
400+280z+9z^2=0
9z^2+280z+400=0
We now have a quadratic equation, and we need to find its roots. To do it, let's identify the values of a, b, and c. 9z^2+ 280z+ 400=0 We can see that a= 9, b= 280, and c= 400. Let's substitute these values into the Quadratic Formula.
z=- b±sqrt(b^2-4ac)/2a
z=- 280 ±sqrt(280^2-4( 9)( 400))/2( 9)
â–Ľ
Simplify right-hand side
z=280±sqrt(78 400-4(9)(400))/2(9)
z=280±sqrt(78 400-14 400)/18
z=280±sqrt(64 000)/18
z=280±sqrt(6400 * 10)/18
z = 280 ± sqrt(6400) * sqrt(10)/18
z = 280 ± 80 sqrt(10)/18
z = 2 ( 140 ± 40 sqrt(10) )/18
z = 140 ± 40 sqrt(10)/9
Using the Quadratic Formula, we found that the solutions of the given equation are z_1= 140 +40 sqrt(10)9 and z_2= 140 - 40 sqrt(10)9. Let's check them to see if we have any extraneous solutions.

Checking the Solutions

We will check z_1= 140 + 40sqrt(10)9 and z_2= 140 - 40 sqrt(10)9 one at a time.

z_1=140 + 40sqrt(10)/9

Now, let's substitute z_1= 140 + 40sqrt(10)9 into the given equation.
sqrt(20-4z)+2sqrt(- z)=10
sqrt(20-4 * 140 + 40sqrt(10)/9) + 2sqrt(- 140 + 40 sqrt(10)/9)? =10
â–Ľ
Simplify
sqrt(20-4 * 140 + 40sqrt(10)/9) + sqrt(4) * sqrt(- 140 + 40 sqrt(10)/9)? =10
sqrt(20-4 * 140 + 40sqrt(10)/9) + sqrt(- 4 * 140 + 40 sqrt(10)/9)? =10
sqrt(20-560 + 160sqrt(10)/9) + sqrt(- 4(140 + 40 sqrt(10))/9)? =10
sqrt(20-560 + 160sqrt(10)/9) + sqrt(- 560 - 160 sqrt(10)/9)? =10
sqrt(180/9-560 + 160sqrt(10)/9) + sqrt(- 560 - 160sqrt(10)/9) ? =10
sqrt(- 380 - 160sqrt(10)/9) + sqrt(- 560 - 160sqrt(10)/9)? =10
sqrt(- 98.44) + sqrt(- 118.44) ≠ 10 *
We obtained a false statement. Therefore, z_1= 140 + 40sqrt(10)9 is not a solution to the given equation.

z_2=140 - 40 sqrt(10)/9

Now, let's substitute z_2= 140 - 40 sqrt(10)9 into the original equation.
sqrt(20-4z)+2sqrt(- z)=10
sqrt(20-4 * 140 - 40sqrt(10)/9) + 2sqrt(- 140 - 40 sqrt(10)/9)? =10
â–Ľ
Simplify
sqrt(20-4 * 140 - 40sqrt(10)/9) + sqrt(4) * sqrt(- 140 - 40 sqrt(10)/9)? =10
sqrt(20-4 * 140 - 40sqrt(10)/9) + sqrt(- 4 * 140 - 40 sqrt(10)/9)? =10
sqrt(20-560 - 160sqrt(10)/9) + sqrt(- 4(140 - 40 sqrt(10))/9)? =10
sqrt(20-560 - 160sqrt(10)/9) + sqrt(- 560 + 160 sqrt(10)/9)? =10
sqrt(180/9-560 - 160sqrt(10)/9) + sqrt(- 560 + 160sqrt(10)/9) ? =10
sqrt(- 380 + 160sqrt(10)/9) + sqrt(- 560 + 160sqrt(10)/9)? =10
sqrt(13.996) + sqrt(- 6.004) ≠ 10 *
We also obtained a false statement. Therefore, there are no solutions to the given equation.