Expand menu menu_open Minimize Start chapters Home History history History expand_more
{{ item.displayTitle }}
navigate_next
No history yet!
Progress & Statistics equalizer Progress expand_more
Student
navigate_next
Teacher
navigate_next
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
No results
{{ searchError }}
search
menu_open
{{ courseTrack.displayTitle }}
{{ statistics.percent }}% Sign in to view progress
{{ printedBook.courseTrack.name }} {{ printedBook.name }}
search Use offline Tools apps
Login account_circle menu_open

Analyzing Graphs of Absolute Value Functions

Analyzing Graphs of Absolute Value Functions 1.3 - Solution

arrow_back Return to Analyzing Graphs of Absolute Value Functions

To graph y=5xy=|5x| using a table of values, we will assign some random values for xx and calculate the corresponding values for y.y. Recall that the absolute value removes the negative sign.

xx 5x|5x| y=5xy=|5x|
-4{\color{#0000FF}{\text{-} 4}} 5(-4)|5({\color{#0000FF}{\text{-}4}})| 2020
-2{\color{#0000FF}{\text{-} 2}} 5(-2)|5({\color{#0000FF}{\text{-}2}})| 1010
0{\color{#0000FF}{0}} 5(0)|5({\color{#0000FF}{0}})| 00
2{\color{#0000FF}{2}} 5(2)|5({\color{#0000FF}{2}})| 1010
4{\color{#0000FF}{4}} 5(4)|5({\color{#0000FF}{4}})| 2020

Now we can plot and connect the obtained points on a coordinate plane. Keep in mind that the graph of an absolute value function has a V shape!