Expand menu menu_open Minimize Start chapters Home History history History expand_more
{{ item.displayTitle }}
navigate_next
No history yet!
Progress & Statistics equalizer Progress expand_more
Student
navigate_next
Teacher
navigate_next
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
No results
{{ searchError }}
search
menu_open
{{ courseTrack.displayTitle }}
{{ statistics.percent }}% Sign in to view progress
{{ printedBook.courseTrack.name }} {{ printedBook.name }}
search Use offline Tools apps
Login account_circle menu_open

Analyzing Functions in Context

Analyzing Functions in Context 1.4 - Solution

arrow_back Return to Analyzing Functions in Context

We are given the rule for the surface area, A,A, of a sphere as a function of its radius r.r. V=4πr2\begin{gathered} V=4\pi r^2 \end{gathered} In this relationship we have control over r.r. Therefore, it is the independent variable. The volume VV depends on how the radius rr changes, making it the dependent variable.